

Institut national de la santé et de la recherche médicale

Metabolic syndrome and dairy products : results from a French prospective study, D.E.S.I.R. (Data from the Epidemiological Study on the Insulin Resistance Syndrome)

F. Fumeron, A. Lamri, C. Abi Khalil, R. Jaziri, I. Porchay-Baldérelli, O. Lantieri, S. Vol, B. Balkau, M. Marre. Dairy consumption and the incidence of hyperglycaemia and metabolic syndrome: results from a French prospective study, D.E.S.I.R. (Data from the Epidemiological Study on the Insulin Resistance Syndrome). Diabetes Care 2011;34:813–817

Adipose tissue distribution Gynoid vs. android pattern

Metabolic syndrome = Insulin Resistance Syndrome

- Abdominal obesity
- Hyperinsulinemia
- High fasting plasma glucose
- Impaired glucose tolerance
- Hypertriglyceridemia
- Low HDL-cholesterol
- Hypertension

Cardiovascular risk

- LDL-C = risk factor +++
- Saturated fats and dietary cholesterol from animal products 7 LDL-C
- However: no clear evidence *risk* cardiovascular
 risk with milk and dairy products

Dairy products and insulin resistance : epidemiological data

• CARDIA prospective study (USA)

– High intake: ↓ 72% metabolic syndrome risk, compared to low intake (Pereira et al. 2002)

- D.E.S.I.R. cross sectional study (France)
 - At least one daily portion of milk products:
 \$\overline\$ 40% metabolic syndrome risk in men (Mennen et al. 2000)
 - Calcium intake: ↓ arterial blood pressure, ↑ HDL-cholesterol, ↓ insulin (Drouillet et al. 2007)

AIM

To study prospectively the associations in the D.E.S.I.R. cohort between the intake of dairy products at baseline and the incidence of Metabolic Syndrome and related parameters during a 9-year followup

METHODS

D.E.S.I.R. study

(Data from the Epidemiological Study on the Insulin Resistance Syndrome)

- Prospective study with a 9-year follow-up
- 5212 volunteer subjects from ten Health Examination Centres in the western central part of France
- Visits : 0, 3, 6 et 9 years → clinical, biological, anthropometric variables + questionnaires for lifestyle, etc.

D.E.S.I.R. study

(Data from the Epidemiological Study on the Insulin Resistance Syndrome)

	Baseline characteristics		
N (Men/Women)	5212 (2576 / 2636)		
Age (years) [30-64]	46.7 ± 10.0		
Fasting plasma glucose (mmol/L) 5.33 ± 0.89		
BMI (kg/m²)	24.7 ± 3.8		

For this study, subjects on diet or with type 2 diabetes at inclusion, subjects without IFG/T2D or MetS but lost at-follow-up (T9) were excluded \rightarrow # 3400 subjects in the analyses

Metabolic syndrome criteria

- NCEP-ATP III (at least 3 of the following)
 - Waist circumference \geq 102 cm (men), \geq 88 cm (women)
 - HDL-Cholesterol < 1.03 mmol/l (men), <1.29 mmol/l (women)
 - Triglycerides \geq 1.70 mmol/l
 - Systolic blood pressure \geq 130mm Hg OR diastolic \geq 85 mm Hg
 - Fasting plasma glucose ≥ 6.1 mmol/l (1.10g/l)
- IDF (International Diabetes Federation)
 - Waist circumference ≥ 94 cm (men), ≥ 80 cm (women)
 - + 2 other criteria
 - HDL-Cholesterol < 1.03 mmol/l (men), <1.29 mmol/l (women)
 - − Triglycerides \ge 1.70 mmol/l
 - Systolic BP ≥ 130 mmHg OR diastolic ≥ 85 mmHg OR antihypertensive treatment
 - Fasting plasma glucose ≥ 5.6 mmol/I OR antidiabetic treatment

Food questionnaire

- Very simple food frequency questionnaire with 23 questions on usual diet, including for dairy products :
 - "How many times do you take milk or milk products per day, including breakfast?" (milk, yoghurt, cream cheese, etc.)
 → never ; < 1 portion/day ; 1-2 portions/day ; > 2 /day
 - "How much cheese do you eat per day?"
 - \rightarrow 0-1 portion/day ; 2-3 portions/day ; > 3/day
 - One portion = 125 mL milk or milk products = 30 g cheese (1/8 camembert!)
- The questionnaire has been validated, its results can be transformed into amounts of energy and nutrients.
- Sex specific quartiles of calcium density (calcium intake/1000kcal) were calculated

Dairy products consumption I (T0)

	DAIRY PRODUCTS (no cheese)					
	never %	< 1/day %	1-2/day %	2/day %	N	
Men	13.0	25.3	50.7	11.0	2 527	
Women	6.2	19.7	54.8	19.4	2 582	- P<0.001
Total	9.5	22.5	52.8	15.3		_
N	487	1 147	2 695	780	5 109	

		CHEESE			
	0-1/day %	2-3/day %	> 3/day %	N	
Men	36.2	56.6	7.2	2 527	_
Women	48.9	46.0	5.0	2 579	P<0.00
Total	42.6	51.3	6.1		-
N	2 177	2 618	311	5 106	-

Dairy products consumption II (T0)

Dairy products consumption III (T0)

Least Squares Means

Least Squares Means

Dairy products consumption IV (T0)

Least Squares Means

Least Squares Means

Statistics

Tests for associations between dairy variables and

- incidence of diseases (metabolic syndrome, impaired fasting glycemia, type 2 diabetes) by: logistic regression
 - Model 1 : Covariates = age, sex, alcohol consumption, smoking status, physical activity, fat intake
 - Model 2 = model 1 + BMI (mean T0-T9) as covariate
 - Odds ratios indicate the risk for a change from one group to the next (e.g. from one quartile of calcium density to the next quartile)
- continuous variables (BMI, blood pressure, etc.) by: ANCOVA for repeated measures
 - to test for average effect of dairy products and effects on changes between baseline and the end of the follow-up (9 years), adjusted for age, sex, alcohol, smoking, physical activity, fat intake, BMI (meanT0-T9)

RESULTS

Results

• Milk products (cheese excluded)

Milk product consumption and metabolic syndrome

Whole population

Milk product consumption and incidence of type 2 diabetes and/or impaired fasting glycemia

Milk product consumption and BMI

Whole population

BMI at baseline and after a 9-year follow-up, by milk product consumption at baseline

Milk product consumption and Diastolic Blood Pressure

Whole population

DBP (mmHg) at baseline and after a 9-year follow-up, by milk product consumption at baseline

Milk product consumption and plasma triglycerides

Whole population

Results

- Milk products (cheese excluded)
- Cheese

Cheese consumption and metabolic syndrome

Whole population

Cheese consumption and incidence of type 2 diabetes and/or impaired fasting glycemia

Whole population

No significant effect on T2D alone, neither on IFG+T2D

Cheese consumption and BMI

Whole population

BMI at baseline and after a 9-year follow-up, by cheese consumption at baseline

Average effect of cheese consumption on BMI: NS Effect of cheese on changes in BMI : 0.007

Cheese consumption and waist circumference

Whole population

Waist (cm) at baseline and after a 9-year follow-up, by cheese consumption at baseline

Cheese consumption and Diastolic Blood Pressure

Whole population

DBP (mmmHg) at baseline and after a 9-year follow-up, by cheese consumption at baseline

Cheese consumption and plasma triglycerides

Whole population

Cheese consumption and plasma insulin

Whole population

Insulin (pmol/L) at baseline and after a 9-year follow-up, by cheese consumption at baseline

Results

- Milk products (cheese excluded)
- Cheese

 Calcium density (=calcium in mg / calories)

Dietary calcium density and metabolic syndrome

Whole population

NCEP : Model 1 : OR = **0.87** (0.79-0.96) ; p= 0.004 Model 2 : OR = **0.85** (0.77-0.95) ; p = 0.003

Dietary calcium density and incidence of type 2 diabetes and/or impaired fasting glycemia

Whole population

No effect on T2D alone. IFG+T2D, model 1 : OR = **0.89** (0.81 -0.97) ; p = 0.008 model 2 : OR = **0.88** (0.80-0.96) ; p = 0.006

Dietary calcium density and BMI

Whole population

BMI at baseline and after a 9-year follow-up, by dietary calcium density at baseline

Average effect of dietary calcium density on BMI: NS Effect of dietary calcium density on changes in BMI : p<0.001

Dietary calcium density and Waist circumference

Whole population

Waist (cm) at baseline and after a 9-year follow-up, by dietary calcium density at baseline

Average effect of dietary calcium density on waist circumference: 0.07 Effect of dietary calcium density on changes in waist circumference : 0.001

Dietary calcium density and Diastolic Blood Pressure

Whole population

DBP (mmHg) at baseline and after a 9-year follow-up, by dietary calcium density at baseline

Dietary calcium density and plasma triglycerides

Whole population

Triglycerides (mmol/L) at baseline and after a 9-year follow-up, by dietary calcium density at baseline 1,15 1,1 1,05 2 📥 3 1 0,95 0,9 **Baseline** 9-year follow-up Average effect of dietary calcium density on TG: p=0.004

Effect of dietary calcium density on changes in TG : p=0.01

Dietary calcium density and plasma insulin

Whole population

Insulin (pmol/L) at baseline and after a 9-year follow-up, by dietary calcium density at baseline

Impact of dairy products and calcium consumption on the incidence of metabolic syndrome and on related variables in the D.E.S.I.R. cohort

	Metabolic syndrome	IFG+T2D	BMI	WAIST	Blood pressure (diastolic)	TG	Insulin
	₩	↓	Ψ Δ		♥mean	↓ mean	∛ ↓ mean
	¥		Ψ Δ	↓ ∆	∳ mean ∳ Δ	∳ mean ∳∆	∳ mean
40 Calcium 20	¥	↓	Ψ Δ	↓ ∆	∳ mean	∳ mean ∳ ∆	∳ mean

MECHANISMS ???

Milk and dairy components

Calcium, other minerals (magnesium, potassium, selenium, zinc)

Vitamin D

Fatty acids: Cis-9, trans-11 conjugated linoleic acid (CLA) Trans palmitoleic Vaccenic

Proteins and peptides

Calcium

- Inverse relationship between calcium consumption and intra-cellular calcium
- Involved in lipid metabolism regulation (lipolysis and lipogenesis), insulin and adiponectin signalling...
- Inflammation, oxidative stress

Other minerals

• Magnesium, potassium :

→blood pressure, type 2 diabetes

- Zinc, selenium :
 - → inflammation, oxidative stress

Health effects of vitamin D.....

Remark: in Northern America (USA, Canada), milk and dairy are supplemented with vitamin D, but NOT IN FRANCE !!!

Dairy products and fatty acids

Cis-9, trans-11 conjugated linoleic acid (CLA)

- \uparrow PPAR γ expression $\Rightarrow \downarrow$ insulin resistance
- \checkmark hyperinsulinism and hypertension, \uparrow [adiponectin] in Zucker rat

Vaccenic acid (*trans*-11 18:1)

- Precursor of c9,t11 CLA
- PPAR- α agonist \rightarrow hypolipidemiant, \uparrow FA oxidation
- Inhibits effects of saturated-fat rich diet (↓ LDL, ↓ hepatic steatosis, fat mass distribution, ↑ energy expenditure)

Trans-palmitoleic acid (*trans*-7 16:1)

In the Four U.S. communities Cardiovascular Health Study, circulating levels \checkmark T2D incidence, \checkmark BMI, \checkmark waist circumference, and independently \uparrow HDL-C, \checkmark TG, \checkmark CRP, \checkmark HOMA-IR.

Milk peptides: ACE inhibitor effect

- IPP, VPP, ALPMHIR
- = Peptides from caseins and whey proteins after chemical, physical, enzymatic treatments
- → digestive enzymes hydrolysis (*in vitro* or *in vivo*)
 → lactic fermentation
- More active peptide from β -lactoglobulin
- ACE inhibitor effect in vitro and in vivo (SHR rat)

Milk proteins : incretin effect

Effects of a Protein Preload on Gastric Emptying, Glycemia, and Gut Hormones After a <u>Carbohydrate Meal</u> in Diet-Controlled Type 2 Diabetes

JING MA, MBB5^{1,2} JULIE E. STEVENS, BPHARM, BSC^{1,2} KIMBERLY CUKIER, MBB5³ ANNE F. MADDOX, ASS DIP RAD TECH^{1,2} JUDITH M. WISHART, BSC^{1,2} KAREN L. JONES, PHD^{1,2} Peter M. Clifton, MBBS, PHD^{3,4} Michael Horowitz, MBBS, PHD^{1,2,3} Christopher K. Rayner, MBBS, PHD^{1,2} sumed beef-flavored soup (3.8 g r loric beef flavoring dissolved in water) 30 min before a mashed meal containing 65 g powdered (Deb Instant Mashed Potato, E Diabetes Care 32:1600–1602, 2009

→ Whey preload before a CHO meal: secretion of incretins (GLP-1 and GIP), insulin, \checkmark gastric emptying, \checkmark glycemia.

Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: comparison of whey, casein, gluten, and cod protein^{1–3}

Lene S Mortensen, Merete L Hartvigsen, Lea J Brader, Arne Astrup, Jürgen Schrezenmeir, Jens J Holst, Claus Thomsen, and Kjeld Hermansen

Am J Clin Nutr 2009;90:41–8.

→ Whey in meal ↓ iAUC TG, FFA, glucose

Conclusions

- A higher consumption of milk products and calcium reduces the incidence of the metabolic syndrome during a 9-year period in a large cohort drawn from the French general population.
- This inverse association is observed with most of the traits of the metabolic syndrome: hyperglycemia, high blood pressure, triglycerides, insulin levels
- These results indicate that dairy products consumption could improve the cardiovascular risk.
- Many components in milk and dairy products could explain these effects.

THANKS TO

Investigators and volunteers from D.E.S.I.R.

D.E.S.I.R. study group: INSERM U780-IFR69 (Villejuif) : Beverley Balkau, Pierre Ducimetière IRSA Tours : Sylviane Vol, Jean Tichet

Grants from:

